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Turbulent motions enhance the diffusion of large-scale flows and temperature gradients.
Such diffusion is often parameterized by coefficients of turbulent viscosity (𝜈t) and turbulent
thermal diffusivity (𝜒t) that are analogous to their microscopic counterparts. We compute the
turbulent diffusion coefficients by imposing large-scale velocity and temperature gradients
on a turbulent flow and measuring the response of the system. We also confirm our results
using experiments where the imposed gradients are allowed to decay. To achieve this, we use
weakly compressible three-dimensional hydrodynamic simulations of isotropically forced
homogeneous turbulence. We find that the turbulent viscosity and thermal diffusion, as
well as their ratio the turbulent Prandtl number, Prt = 𝜈t/𝜒t, approach asymptotic values at
sufficiently high Reynolds and Peclét numbers. We also do not find a significant dependence
of Prt on the microscopic Prandtl number Pr = 𝜈/𝜒. These findings are in stark contrast to
results from the 𝑘 − 𝜖 model which suggests that Prt increases monotonically with decreasing
Pr. The current results are relevant for the ongoing debate of, for example, the nature of the
turbulent flows in the very low Pr regimes of stellar convection zones.
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1. Introduction
The fluids in stellar convection zones are generally characterized by a low microscopic
Prandtl number, Pr = 𝜈/𝜒, where 𝜈 is the kinematic viscosity and 𝜒 is the thermal diffusivity
(e.g. Ossendrĳver 2003; Augustson et al. 2019). Typical values in the bulk of the solar
convection zone, for example, range between 10−6 and 10−3 (Schumacher & Sreenivasan
2020). Recently, several studies have explored the possibility that solar convection operates
at a high effective Prandtl number regime, meaning that the turbulent Prandtl number Prt
exceeds unity (e.g. O’Mara et al. 2016; Bekki et al. 2017; Karak et al. 2018), as a possible
solution to the too high velocity amplitudes in simulations in comparison to the Sun (e.g.
Hanasoge et al. 2012; Schumacher & Sreenivasan 2020). However, few attempts have been
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made to actuallymeasure the turbulent Prandtl number from simulations. A notable exception
is the study of Pandey et al. (2021) who reported that the turbulent Prandtl number decreases
steeply as a function of the molecular Prandtl number such that Prt ∝ Pr−1 in simulations of
standard Boussinesq and variable heat conductivity Boussinesq convection.
Here we set out to measure turbulent viscosity and thermal diffusivity from a simpler

system of isotropically forced homogeneous turbulence. This is done by imposing large-
scale gradients of velocity and temperature (equivalently specific entropy) and measuring
the response of the system. The turbulent diffusion coefficients are computed from the
Boussinesq ansatz and an analogous expression for the enthalpy flux. This method provides
a direct measurement of the diffusion coefficients without the need to resort to turbulent
closures. Similar methods were used recently to measure the turbulent magnetic Prandtl
number (Käpylä et al. 2020). We compare our results with those from the widely used 𝑘 − 𝜖

model which was also used by Pandey et al. (2021). We show that the direct results and those
from the 𝑘 − 𝜖 model are systematically different and that the latter yields misleading results.

2. The model
Wemodel isotropically forced, non-isothermal, turbulence in a fully periodic cube of volume
(2𝜋)3. We solve the equations of fully compressible hydrodynamics

𝐷 ln 𝜌
𝐷𝑡

= −∇ · 𝒖, (2.1)

𝐷𝒖

𝐷𝑡
= − 1

𝜌
(∇𝑝 − ∇ · 2𝜈𝜌S) + 𝒇 − 1

𝜏
(𝒖 − 𝒖0), (2.2)

𝑇
𝐷𝑠

𝐷𝑡
= − 1

𝜌
(∇ · Frad − C) + 2𝜈S2 − 𝑇

𝜏
(𝑠 − 𝑠0), (2.3)

where 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝒖 · ∇ is the advective derivative, 𝜌 is the density, 𝒖 is the velocity, 𝑝
is the pressure, 𝜈 is the kinematic viscosity, S is the traceless rate-of-strain tensor with

S𝑖 𝑗 = 1
2 (𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖) − 1

3𝛿𝑖 𝑗∇ · 𝒖, (2.4)

𝒇 is the external forcing, 𝜏 is a relaxation timescale, and 𝒖0 is the target mean velocity profile.
Furthermore, 𝑇 is the temperature, 𝑠 is the specific entropy, Frad is the radiative flux, C is a
cooling term, and 𝑠0 is the target mean specific entropy profile. Radiation is modeled via the
diffusion approximation, with the radiative flux given by

Frad = −𝑐𝑃𝜌𝜒∇𝑇, (2.5)

where 𝑐𝑃 is the specific heat in constant pressure and 𝜒 is the thermal diffusivity. The ideal
gas equation of state 𝑝 = (𝑐𝑃 − 𝑐𝑉 )𝜌𝑇 = R𝜌𝑇 is assumed, where R is the gas constant, and
𝑐𝑉 is the specific heat capacity at constant volume. In the presence of an imposed large-scale
flow, viscous dissipation of kinetic energy acts as a source for thermal energy and leads to a
linear increase of the temperature. Additional volumetric cooling is applied to counter this
with

C(𝒙) = 𝜌𝑐𝑃
𝑇 (𝒙) − 〈𝑇0〉

𝜏cool
, (2.6)

where 〈𝑇0〉 is the volume-averaged initial temperature and 𝜏cool is a cooling timescale. We
use 𝜏 = 𝜏cool = (𝑐𝑠0𝑘1)−1, where 𝑐𝑠0 is the initial uniform value of the sound speed and 𝑘1
is the wavenumber corresponding to the box scale.
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The external forcing is given by (see Brandenburg 2001)

𝒇 = Re{𝑁 (𝑡) 𝒇𝒌 (𝑡) exp[i𝒌 (𝑡) · 𝒙 − i𝜙(𝑡)]}, (2.7)

where 𝒙 is the position vector and 𝑁 (𝑡) = 𝑓0𝑐s(𝑘 (𝑡)𝑐s/𝛿𝑡)1/2 is a normalization factor where
𝑓0 is the forcing amplitude, 𝑘 = |𝒌 |, 𝛿𝑡 is the length of the time step, and −𝜋 < 𝜙(𝑡) < 𝜋 is a
random delta-correlated phase. The vector 𝒇𝒌 describes non-helical transverse waves, and is
given by

𝒇𝒌 =
𝒌 × 𝒆√︁

𝒌2 − (𝒌 · 𝒆)2
, (2.8)

where 𝒆 is an arbitrary unit vector, and where the wavenumber 𝒌 is randomly chosen. The
target profiles of mean velocity and specific entropy are given by

𝒖0 = 𝑢0 sin(𝑘1𝑧) 𝒆̂𝑦 , (2.9)
𝑠0 = 𝑠0 sin(𝑘1𝑧). (2.10)

In addition to the physical diffusion, the advective terms in (2.1) to (2.3) are implemented
in terms of fifth-order upwinding derivatives with sixth-order hyperdiffusive corrections and
flow-dependent diffusion coefficients; see Appendix B of Dobler et al. (2006).
The Pencil Code (Pencil Code Collaboration et al. 2021)†, which uses high-order finite

differences for spatial and temporal discretisation, was used to produce the numerical
simulations.

2.1. Units, system parameters, and diagnostics
The equations are non-dimensionalized by choosing the units

[𝑥] = 𝑘−11 , [𝜌] = 𝜌0, [𝑢] = 𝑐s0, [𝑠] = 𝑐𝑃 , (2.11)

where 𝜌0 is the initial uniform density and 𝑐s0 =
√︁
𝛾R𝑇0 is the sound speed corresponding

to the initial temperature 𝑇0. The level of velocity fluctuations is determined by the forcing
amplitude 𝑓0 along with the kinematic viscosity. A key system parameter is the ratio of
kinematic viscosity and thermal diffusion or the Prandtl number

Pr =
𝜈

𝜒
, (2.12)

which is varied between 0.01 and 10 in the present study. The Reynolds and Péclet numbers
quantify the level of turbulence of the flows:

Re =
𝑢rms

𝜈𝑘f
, Pe = PrRe =

𝑢rms

𝜒𝑘f
, (2.13)

where 𝑢rms =
√︁
〈(𝒖 − 𝒖0)2〉 is the volume-averaged fluctuating rms-velocity and 𝑘f is the

average forcing wavenumber characterizing the energy injection scale. The latter is chosen
from a uniformly distributed narrow range in the vicinity of 5𝑘1. The imposed gradients of
large-scale flow and entropy are quantified by

Ma𝑠 =
𝑢0

𝑐s0
, Ma𝑔 =

[(𝛾 − 1)𝑠0𝑇0]1/2
𝑐s0

, (2.14)

† http://github.com/pencil-code

http://github.com/pencil-code


4

Set Pr Re Pe Ma Ma𝑠 Ma𝑔 # runs

i001 0.01 27 . . . 779 0.27 . . . 7.8 0.069 . . . 0.079 0.01 . . . 0.03 0.07 . . . 0.1 10
i002 0.02 27 . . . 779 0.54 . . . 16 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 12
i005 0.05 27 . . . 780 1.4 . . . 39 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 12
i010 0.1 12 . . . 800 1.2 . . . 80 0.060 . . . 0.082 0.01 . . . 0.03 0.07 . . . 0.1 30
i020 0.2 27 . . . 781 5.4 . . . 156 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 10
i025 0.25 397 99 0.081 0.01 . . . 0.03 0.07 . . . 0.1 2
i050 0.5 27 . . . 781 14 . . . 390 0.069 . . . 0.081 0.01 . . . 0.03 0.07 . . . 0.1 12
i075 0.75 399 301 0.081 0.01 . . . 0.03 0.07 . . . 0.1 2
i100 1.0 27 . . . 1582 27 . . . 1582 0.069 . . . 0.081 0.01 . . . 0.03 0.07 . . . 0.1 14
i200 2.0 22 44 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
i500 5.0 22.2 111 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
i1000 10.0 22.3 223 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
du001 0.01 153 1.5 0.078 0.01 − 10
du010 0.1 153 . . . 391 15 . . . 39 0.078 0.01 . . . 0.03 − 11
du100a 1.0 154 154 0.079 0.01 − 10
du100b 1.0 154 154 0.079 0.03 − 10
ds001 0.01 153 1.5 0.078 − 0.1 10
ds010 0.1 153 . . . 391 15 . . . 39 0.078 − 0.07 . . . 0.1 11
ds100 1.0 153 153 0.078 − 0.1 10

Table 1: Summary of runs. Runs with imposed velocity or specific entropy gradients are
denoted with prefix i, whereas decay experiments of velocity (specific entropy) are
identified by prefix du (ds). Grid resolutions range between 1443 and 11523.

where Ma𝑠 is the Mach number of the mean flow and 𝑘𝑈 = 𝑘𝑠 = 𝑘1. The Mach number of
the turbulent flow is given by

Ma =
𝑢rms

〈𝑐s〉
, (2.15)

where 〈𝑐s〉 is the volume-averaged speed of sound.
Mean values are taken to be horizontal averages denoted by overbars, that is

𝑓 =
1

(2𝜋)2

∫
𝑥

∫
𝑦

𝑓 (𝒙)𝑑𝑥𝑑𝑦. (2.16)

Often an additional time average over the statistically steady part of the simulation is taken.
Volume averages are denoted by angle brackets 〈.〉 apart from the rms-values which are
always assumed to be volume-averaged unless otherwise stated. Errors were estimated by
dividing the time series in three parts and averaging over each subinterval. The greatest
deviation from the average computed over the whole time series was taken as the error
estimate.

3. Results
The simulations discussed in the present study are listed in table 1.

3.1. Turbulent viscosity and heat diffusion from imposed flow and entropy methods
We measure the turbulent viscosity and thermal diffusivity in two ways. First, we impose
sinusoidal large-scale profiles of velocity (2.9) or entropy (2.10). The response of the system
are non-zero Reynolds stress and vertical enthalpy flux profiles that are parameterized with
gradient diffusion terms (e.g. Rüdiger 1989)

𝐹enth𝑧 (𝑧) = 𝑐𝑃 (𝜌𝑢𝑧) ′𝑇 ′ ≈ 𝑐𝑃𝜌𝑢
′
𝑧𝑇

′ = −𝜒t𝜌𝑇
𝜕𝑠

𝜕𝑧
, (3.1)

Focus on Fluids articles must not exceed this page length
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Figure 1: Normalized turbulent viscosity 𝜈t = 𝜈t/𝜈t0 (squares) and heat diffusivity
𝜒̃t = 𝜒t/𝜒t0 (circles) as functions of Reynolds and Péclet numbers. The crosses (×) and
pluses (+) indicate results from decay experiments. The colours of the symbols indicate
the microscopic Prandtl number as shown by the colourbar. The dotted horizontal lines
show fit to the data for Pe,Re > 10 and a line proportional to Pe is shown for low Pe.

and

𝑅𝑦𝑧 (𝑧) = 𝑢′𝑦𝑢
′
𝑧 = −𝜈t

𝜕𝑢𝑦

𝜕𝑧
, (3.2)

where primes denote fluctuations from the mean, e.g., 𝒖′ = 𝒖 − 𝒖. The Mach number in the
current simulations is always less than 0.1. Therefore we neglect density-dependent terms in
our analysis because they scale with Ma2.
The coefficients 𝜒t and 𝜈t are assumed to be scalars and were obtained from linear fits

between time-averaged 𝐹enth𝑧 and 𝜌𝑇𝜕𝑧𝑠 and between 𝑅𝑦𝑧 and 𝜕𝑧𝑢𝑦 , respectively. Results
from our simulations are shown in figure 1. We normalize 𝜈t and 𝜒t by

𝜈t0 = 𝜒t0 =
1
3𝑢rms𝑘

−1
f , (3.3)

which is an order of magnitude estimate for the turbulent diffusion coefficients. We note that
in the parameter regimes studied here, the estimates 𝜈t0 and 𝜒t0 are very similar in all of our
runs. Our results show that for low Péclet numbers the turbulent heat diffusion increases in
proportion to Pe for Pe . 1. This is consistent with earlier numerical results for turbulent
viscosity (e.g. Käpylä et al. 2020), magnetic diffusivity (e.g. Sur et al. 2008), and passive
scalar diffusion (Brandenburg et al. 2009), and with corresponding analytic results in the
diffusion dominated (Pe � 1) regime. For sufficiently large Pe, 𝜒̃t tends to a constant value.
The turbulent viscosity is also roughly constant in the parameter space covered here. For low
fluid Reynolds numbers 𝜈t is proportional to Re as has been shown in Käpylä et al. (2020).
However, we do not cover this parameter regime with the current simulations.

3.2. Turbulent viscosity and heat diffusion from decay experiments
Decay experiments were made as an independent way to measure the turbulent viscosity
and heat diffusion. Snapshots from the imposed velocity/entropy gradient runs were used
as initial conditions and the relaxation terms of the rhs of the Navier–Stokes and entropy
equations were deactivated. The large-scale velocity and entropy profiles in such runs decay
due to the combined effect of molecular and turbulent diffusion. To measure the decay rate
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Figure 2: Panels (a) and (b): 𝑢𝑦 (𝑡, 𝑧) and 𝑠(𝑡, 𝑧) normalized by 𝑐𝑠 and 𝑐𝑃 , respectively,
from decay experiments with Pr = 1 and Re = 157. Red vertical lines denote end times of
exponential fits. Panels (c) and (d): temporal decays of 𝑘𝑧/𝑘1 = 1 mode of 𝑢𝑦 and 𝑠,
respectively; black line shows the progenitor run, and the red/gray lines indicate the
decaying runs; red part is used to fit exponential decay; blue dotted lines show the

exponential fit.

we monitored the amplitude of the 𝑘 = 𝑘1 components of 𝑢𝑦 and 𝑠. Exponential decay laws

𝑢𝑦 (𝑡, 𝑘1) = 𝑢𝑦 (𝑡0, 𝑘1)𝑒−(𝜈t+𝜈)𝑡 , 𝑠(𝑡, 𝑘1) = 𝑠(𝑡0, 𝑘1)𝑒−(𝜒t+𝜒)𝑡 , (3.4)

were then fitted to the numerical data. Representative examples from decay experiments of
large-scale velocity and entropy are shown in figure 2. The upper panels (a) and (b) show
𝑢𝑦 (𝑧, 𝑡) and 𝑠𝑦 (𝑧, 𝑡) from typical decay experiments. The 𝑘1 components of these fields decay
exponentially when the forcing is turned off; see panels (c) and (d) of figure 2. Ultimately the
amplitude of the 𝑘1 mode decreases sufficiently such that it cannot be distinguished from the
background turbulence. The time it takes to reach this state varies and depends on the initial
amplitudes 𝑢0 and 𝑠0. However, at the same time these amplitudes need to be kept as low as
possible to avoid non-linear effects becoming important (see, e.g. Käpylä et al. 2020). This
is particularly important for the velocity field due to which the range from which turbulent
viscosity can be estimated is limited which necessitates running several experiments with
different snapshots as initial conditions to reach converged values for 𝜈t and 𝜒t.
Due to this, only a limited subset of the parameter range covered by the imposed cases

were repeated with decay experiments. We used ten snapshots from each run for the decay
experiments. The separation between the snapshots is roughly Δ𝑡 = 40𝑢rms𝑘f such that the
realizations can be considered uncorrelated. Results from the decay experiments are shown in
figure 1 with crosses (𝜒t) and pluses (𝜈t). We find that the results from the decay experiments
are consistent with those from the imposed flow and entropy gradient methods.
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Figure 3: Turbulent Prandtl number Pr(𝑘−𝜖 )t according to (3.7) as a function of Péclet
number. The colour of the symbols denotes the molecular Prandtl number as indicated by

the colour bar. Inset: Pr(𝑘−𝜖 )t versus Pr from runs with Pe > 20.

3.3. The 𝑘 − 𝜖 model
To facilitate a comparison with Pandey et al. (2021) we use the expressions of 𝜈t and 𝜒t
derived under the 𝑘 − 𝜖 model with

𝜈
(𝑘−𝜖 )
t = 𝑐′𝜈𝑘

2
𝑢/𝜖𝐾 , (3.5)

𝜒
(𝑘−𝜖 )
t = 𝑐′𝜒𝑘𝑢𝑘𝑇 /𝜖𝑇 , (3.6)

where 𝑘𝑢 = 〈𝒖′2〉/2 is the turbulent kinetic energy, 𝑘𝑇 = 〈𝑇 ′2〉 is the variance of the
temperature fluctuations, 𝑐′𝜈 and 𝑐′𝜒 are assumed to be universal constants†. Viscous and
thermal dissipation rates are defined as 𝜖𝐾 = 2𝜈[〈S2〉 − 〈S0〉2] and 𝜖𝑇 = 𝜒〈(∇𝑇 ′)2〉 =

𝜒[〈(∇𝑇)2〉 − 〈(∇𝑇)2〉], respectively, where we have removed contributions from the mean
flow and the mean entropy; S0 denotes the traceless rate-of-strain tensor as defined in (2.4)
but with 𝒖0 instead of 𝒖. Pandey et al. (2021) computed Prt using the 𝑘 − 𝜖 model by fixing
the ratio of 𝑐′𝜈/𝑐′𝜒, which yields

Pr(𝑘−𝜖 )t =
𝜈
(𝑘−𝜖 )
t

𝜒
(𝑘−𝜖 )
t

=
𝑐′𝜈
𝑐′𝜒

𝑘𝑢𝜖𝑇

𝑘𝑇 𝜖𝑢
. (3.7)

For simplicity, we assume 𝑐′𝜈/𝑐′𝜒 = 1 in this subsection. The results are shown in figure 3.
We find that taking the ratio 𝑐′𝜈/𝑐′𝜒 to be a constant leads to results where Pr

(𝑘−𝜖 )
t increases

monotonically with decreasing Pr when Pe is larger than about 20; see the inset in figure 3
which reveals a dependence of Pr−0.25. Qualitatively, this result is in agreement with the one
in Pandey et al. (2021). However, we would like to note here that a strong assumption was
made to reach this conclusion, namely, that the ratio 𝑐′𝜈/𝑐′𝜒 is fixed, and that 𝑐′𝜈 and 𝑐′𝜒 are
universal constants, independent of control parameters such as Re and Pe. Henceforth, we
relax these assumptions, and also omit primes from the coefficients 𝑐𝜈 and 𝑐𝜒.

† Primes indicate the constancy of 𝑐′𝜈 and 𝑐′𝜒 , but see section 3.4 where this assumption is lifted.
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Figure 4: Similar to figure 1 but for 𝑐𝜈 (Re) and 𝑐𝜅 (Pe) from (3.8) and (3.9). The colours
again indicate the microscopic Prandtl number. The grey dotted lines indicate fits to the

data for (Pe,Re > 10) and a line proportional to Pe is shown for low Pe.

3.4. Relaxing the assumption that 𝑐𝜈 and 𝑐𝜒 are constants
It is reasonable to assume that for sufficiently large Reynolds and Péclet numbers 𝑘𝑢 and 𝑘𝑇
tend to constant values. Furthermore, there is evidence from numerical simulations that 𝜖𝐾
also tends to a non-zero constant value for large Reynolds numbers. Similar evidence for 𝜖𝑇
has not been presented. Therefore it is not clear whether the assumption of universality of
𝑐𝜈 and 𝑐𝜒 is valid. This is particularly important for numerical simulations such as those in
the current study where the Reynolds and Péclet numbers are still modest. Since we have
independently measured 𝜈t and 𝜒t using the imposed flow and entropy method (section 3.1)
and from decay experiments (section 3.2), we can estimate 𝑐𝜈 and 𝑐𝜒 using:

𝑐𝜈 = 𝜈t/(𝑘2𝑢/𝜖𝐾 ), (3.8)
𝑐𝜒 = 𝜒t/(𝑘𝑢𝑘𝑇 /𝜖𝑇 ), (3.9)

where 𝜈t and 𝜒t are the ones obtained above in section 3.1 with the imposed field method.
The results are shown in figure 4. Our results indicate that 𝑐𝜈 and 𝑐𝜒 are highly variable and
that they depend not only on Re and Pe but also on Pr. Furthermore, for sufficiently large
Reynolds and Péclet numbers, 𝑐𝜈 and 𝑐𝜒 show decreasing trends proportional to roughly
−0.25 power of Re and Pe, respectively. This shows that any estimate of 𝜈t or 𝜒t with the
𝑘 − 𝜖 model in the parameter regime studied here would require prior knowledge of 𝑐𝜈 and
𝑐𝜒 for the particular parameters (Re, Pe, Pr) of that system.

3.5. Turbulent Prandtl number
Our results for the turbulent Prandtl number

Prt =
𝜈t

𝜒t
(3.10)

are shown in figure 5 with 𝜈𝑡 and 𝜒𝑡 as discussed in sections 3.1 and 3.2. We find that for
Pe . 1 the turbulent Prandtl number is roughly inversely proportional to Pe for lowmolecular
Prandtl number. We have not computed the turbulent Prandtl number for cases where both
Re and Pe are smaller than unity. For sufficiently high Péclet number the turbulent Prandtl
number tends to a constant value which is close to 0.7. This is in accordance with theoretical
estimates in that Prt is somewhat smaller than unity. For example, Rüdiger (1989) derived
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Figure 5: Turbulent Prandtl number Prt = 𝜈t/𝜒t as a function of Péclet number. The colour
of the symbols denotes the molecular Prandtl number as indicated by the colour bar. The
crosses (×) show results from decay experiments. Linear and power law fits to data for
Pe > 10 are shown by the dashed and dotted lines, respectively, and a line proportional to

Pe−1 is shown for low Pe.

Prt = 2/5 using first-order smoothing approximation. The turbulent Prandtl number plays an
important role also in the atmospheric boundary layer where several methods yield values of
the order of unity (Li 2019, and references therein).
That, the turbulent Prandtl number Prt reaches a constant value at sufficiently large Pe,

independent of Pr, is in stark contrast to the results obtained from the 𝑘−𝜖 model with a fixed
𝑐𝜈/𝑐𝜒; compare figures 3 and 5. Now we make an attempt to understand the reason for this
discrepancy. From figure 4 we note the following approximate scaling relations at sufficiently
large Re and Pe: 𝑐𝜈 ∝ Re−0.25 and 𝑐𝜒 ∝ Pe−0.25, suggesting thus that the ratio 𝑐𝜈/𝑐𝜒 scales
with the Prandtl number as Pr+0.25. With this, if we let 𝑐′𝜈/𝑐′𝜒 ∝ Pr+0.25 in 3.7, instead of a
fixed ratio, and note from the inset of figure 3 that the factor 𝑘𝑢𝜖𝑇 /𝑘𝑇 𝜖𝑢 ∝ Pr−0.25, we would
obtain from 3.7 that Pr(𝑘−𝜖 )t becomes independent of Pr, agreeing thus qualitatively with our
results as shown in figure 5. Therefore we conclude that the results from the 𝑘 − 𝜖 model
with a fixed value for the ratio 𝑐𝜈/𝑐𝜒 are unreliable and that the strong dependence of Prt on
Pr found in Pandey et al. (2021) is due to the restrictive assumption in their model.

4. Conclusions
Using simulations of weakly compressible isotropically forced turbulence with imposed
large-scale gradients of velocity and temperature, and corresponding decay experiments, we
find that the turbulent Prandtl number Prt is roughly 0.7 and independent of the microscopic
Prandtl number Pr provided that the Peclét number is higher than about ten. This is in stark
contrast from the recent results of Pandey et al. (2021) who found that Prt ∝ Pr−1 from
non-Boussinesq simulations of convection. Although the physical setups are quite different,
we were able to qualitatively reproduce their finding under the strong assumption that 𝑐𝜈/𝑐𝜒
is fixed, and note that the method by which the turbulent viscosity and thermal diffusivity
were obtained in Pandey et al. (2021) produce unreliable results even in the simpler cases
considered here. Relaxing their assumption of universality of 𝑐𝜈 and 𝑐𝜒, we find that these
depend not only on Re and Pe, respectively, but also on Pr. This allows us to understand the
reason for the discrepancy.
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